Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, Siti Nadiah Abdul Halim and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.110$

For details of how these key indicators were automatically derived from the article, see
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Bromo-1H-indole-3-carbaldehyde 2-nitrophenylhydrazone hemihydrate

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, the water molecule lies on a twofold rotation axis. Symmetry-related molecules are linked to form an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded layer structure.

Comment

A previous study on the Schiff base derived from 5-bromo-indole-3-carbaldehyde details the structure of a thienoylhydrazone derivative (Ali et al., 2005). Replacing the thienyl ring by the 2-nitrophenyl group leads to no significant differences in bonds connecting the two rings; the title compound, (I) (Fig. 1), crystallizes as a hemihydrate, and adjacent molecules are linked by hydrogen bonds (Table 1) into a layer structure.

(I)

Experimental

5-Bromoindole-3-carboxaldehyde ($0.50 \mathrm{~g}, 2.23 \mathrm{mmol}$) and 2-nitrobenzhydrazide ($0.37 \mathrm{~g}, 2.23 \mathrm{mmol}$) were heated in ethanol for 2 h . The solvent was removed to give the crude product, which was then purified by recrystallization from ethyl acetate.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=396.21$
Monoclinic, $P 2 / a$
$a=16.547$ (4) £
$b=6.053$ (2) \AA
$c=16.924$ (4) A
$\beta=111.93$ (2) ${ }^{\circ}$
$V=1572.3$ (8) \AA^{3}
$Z=4$

Data collection

Rigaku R-AXIS RAPID	3491 independent reflections
\quad diffractometer	2481 reflections with $I>2 \sigma(I)$
ω scans	$R_{\mathrm{int}}=0.025$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-21 \rightarrow 21$
$T_{\min }=0.306, T_{\max }=0.677$	$k=-7 \rightarrow 7$
14182 measured reflections	$l=-21 \rightarrow 21$

$D_{x}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9035
reflections
$\theta=3.4-27.5^{\circ}$
$\mu=2.64 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, orange
$0.29 \times 0.21 \times 0.16 \mathrm{~mm}$

3491 independent reflections
2481 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-21 \rightarrow 21$
$l=-21 \rightarrow 21$

Received 22 June 2005 Accepted 24 June 2005 Online 30 June 2005

> Data-to-parameter ratio $=14.9$ For details of how these key in automatically derived from the http://journals.iucr.org/e.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.110$
$S=1.05$
3491 reflections
234 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 n \cdots \mathrm{O} 3^{\text {i }}$	0.85 (1)	2.09 (1)	2.937 (3)	173 (3)
$\mathrm{N} 4-\mathrm{H} 4 n \cdots \mathrm{O} 1 w$	0.85 (1)	2.37 (3)	2.973 (3)	128 (3)
$\mathrm{N} 4-\mathrm{H} 4 n \cdots \mathrm{O} 1^{\text {ii }}$	0.85 (1)	2.43 (2)	3.142 (3)	142 (3)
$\mathrm{O} 1 w-\mathrm{H} 1 w \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.85 (1)	2.22 (2)	3.061 (3)	171 (7)

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $x-\frac{1}{2},-y, z$.
The C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}(\mathrm{C})$. The water and amine H atoms were located in a difference Fourier map and were refined with a distance restraint of 0.85 (1) \AA.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment for supporting this study (grant No. IPRA

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0557 P)^{2}\right. \\
\quad+0.5445 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.41 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.63 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
ORTEPII plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

33-02-03-3055). We acknowledge Professor Gao Shan of Heilongjiang University for the diffraction measurements.

References

Ali, H. M., Abdul Halim, S. N., Lajis, N. H., Basirun, W. J., Zain, Z. M. \& Ng, S. W. (2005). Acta Cryst. E61, o914-o915.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

