organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah M. Ali, Siti Nadiah Abdul Halim and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.038 wR factor = 0.110 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $C_{16}H_{11}BrN_4O_3 \cdot 0.5H_2O$, the water molecule lies on a twofold rotation axis. Symmetry-related molecules are linked to form an $N-H \cdots O$ and $O-H \cdots O$ hydrogen-bonded layer structure. Received 22 June 2005 Accepted 24 June 2005 Online 30 June 2005

Comment

A previous study on the Schiff base derived from 5-bromoindole-3-carbaldehyde details the structure of a thienoylhydrazone derivative (Ali *et al.*, 2005). Replacing the thienyl ring by the 2-nitrophenyl group leads to no significant differences in bonds connecting the two rings; the title compound, (I) (Fig. 1), crystallizes as a hemihydrate, and adjacent molecules are linked by hydrogen bonds (Table 1) into a layer structure.

Experimental

5-Bromoindole-3-carboxaldehyde (0.50 g, 2.23 mmol) and 2-nitrobenzhydrazide (0.37 g, 2.23 mmol) were heated in ethanol for 2 h. The solvent was removed to give the crude product, which was then purified by recrystallization from ethyl acetate.

Crystal data	
$C_{16}H_{11}BrN_4O_3{\cdot}0.5H_2O$	$D_x = 1.674 \text{ Mg m}^{-3}$
$M_r = 396.21$	Mo $K\alpha$ radiation
Monoclinic, $P2/a$	Cell parameters from 9035
a = 16.547 (4) Å	reflections
b = 6.053 (2) Å	$\theta = 3.4-27.5^{\circ}$
c = 16.924 (4) Å	$\mu = 2.64 \text{ mm}^{-1}$
$\beta = 111.93 \ (2)^{\circ}$	T = 295 (2) K
V = 1572.3 (8) Å ³	Block, orange
Z = 4	$0.29 \times 0.21 \times 0.16 \text{ mm}$

Data collectionRigaku R-AXIS RAPID
diffractometer3491 independent reflections
2481 reflections with $I > 2\sigma(I)$ ω scans $R_{int} = 0.025$ Absorption correction: multi-scan
(ABSCOR; Higashi, 1995) $\theta_{max} = 27.5^{\circ}$
 $h = -21 \rightarrow 21$ $T_{min} = 0.306, T_{max} = 0.677$ $k = -7 \rightarrow 7$ 14182 measured reflections $l = -21 \rightarrow 21$

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Ali et al. • $C_{16}H_{11}BrN_4O_3 \cdot 0.5H_2O$

02309

Refinement

Refinement on F^2	$w = 1/[\sigma^2(E^2) + (0.0557P)^2]$
	$W = 1/[0 (T_0) + (0.05571)]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.5445P]
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3491 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
234 parameters	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

lable l			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N2-H2n\cdots O3^{i}\\ N4-H4n\cdots O1w\\ N4-H4n\cdots O1^{ii}\\ O1w-H1w\cdots O2^{ii}\end{array}}$	$\begin{array}{c} 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \end{array}$	2.09 (1) 2.37 (3) 2.43 (2) 2.22 (2)	2.937 (3) 2.973 (3) 3.142 (3) 3.061 (3)	173 (3) 128 (3) 142 (3) 171 (7)

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) $x - \frac{1}{2}$, -y, z.

The C-bound H atoms were positioned geometrically (C-H =0.93 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set at $1.2U_{eq}(C)$. The water and amine H atoms were located in a difference Fourier map and were refined with a distance restraint of 0.85 (1) Å.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment for supporting this study (grant No. IPRA

Figure 1 ORTEPII plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

33-02-03-3055). We acknowledge Professor Gao Shan of Heilongjiang University for the diffraction measurements.

References

- Ali, H. M., Abdul Halim, S. N., Lajis, N. H., Basirun, W. J., Zain, Z. M. & Ng, S. W. (2005). Acta Cryst. E61, 0914-0915.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

